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Abstract

We address the problem of parity mixing, where the projection of a variable expressed as a finite series of half-period
cosine (sine) functions onto a half-period sine (cosine) function basis is not finite. We propose new fast methods for com-
puting these complicated projections exactly up to some arbitrary degree using fast Fourier transforms. This method has
immediate applications for pseudospectral solutions of many systems of partial differential equations.
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1. Introduction

Fourier spectral and pseudospectral methods are important tools in the numerical solution of many non-
linear partial differential equations (PDEs). These methods are appealing because of their many advantages
such as their efficiency and good convergence properties (see [1,2] for detailed review). In Fourier spectral/
pseudospectral methods, there are three basis function sets in common use: (i) the ‘‘full” Fourier series, (ii)
the Fourier sine series, and (iii) the Fourier cosine series. The full Fourier series requires both sine and cosine
functions for completeness and is the method of choice when periodic geometries are involved. For compact
domains with nontrivial boundaries and one or more rectilinear dimensions (i.e., confined domains) one can
employ either a sine series or a cosine series. For these second two cases (Fourier sine series and Fourier cosine
series), both sets are individually complete bases for representing square-integrable functions on a compact
domain. While both basis sets will typically converge for wide classes of functions (independent of the type
of boundary conditions), the particular choice of basis function set is typically strongly suggested by the
requirements of the individual problem under consideration [3]. Usually boundary conditions make this choice
0021-9991/$ - see front matter Published by Elsevier Inc.
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somewhat apparent, e.g., Dirichlet (sines), or Neumann (cosines). In particular, while the sine and cosine rep-
resentations often do not converge geometrically, for problems with algebraic convergence, selecting the
appropriate basis can optimize the rate of algebraic convergence (see, e.g., [1], Section 2.9).

In many problems, one often relies heavily on the fast Fourier transform (FFT) to compute nonlinearities
efficiently. For all three basis sets (full Fourier series, Fourier sine series, and Fourier cosine series), the FFT
can be used to transform rapidly (i.e., in OðN log NÞ instead of OðN 2Þ operations) between a grid space where
multiplication is a local operation and Fourier space where derivatives are local operations. One key require-
ment for the accurate calculation of the FFT is that one uses a sufficient number of discrete points (determined
by the number of modes contained in the spectrum) so that the transform is not contaminated by aliasing
errors (unwanted power in the resolved spectrum from unresolved modes).

Nonlinearities will tend to broaden the spectrum of a dynamic variable over time and aliasing errors can
accumulate in the solution of nonlinear PDEs. Dealiasing techniques are able to account for spectrum broad-
ening for a quadratic nonlinearity; see [4]. This procedure is commonly known as Orszag’s 2/3-rule (see [1]
Chap. 11, Section 5). This rule can easily be generalized to any polynomial nonlinearity of finite-degree. How-
ever, dealiasing with a straightforward application of Orszag’s rule is guaranteed possible only when using the
full Fourier series on periodic domains. On a full periodic domain, a solution that is approximated with band-
limited functions (i.e., is expanded in a finite number of elements) will remain band-limited as long as the gov-
erning system only contains finite-degree nonlinearities, (i.e., polynomial nonlinearities as opposed to more
general analytic functions, such as in the sine-Gordon equation for example). Specifically, the finite-degree
property allows for effective dealiasing. The reason for this is ultimately tied to the fact that on a full periodic
domain, all of the basis elements are mutually orthogonal to each other. In particular, any sine basis function
is orthogonal to any cosine basis function.

Mutual orthogonality between sine and cosine functions is lost when one moves away from periodic
domains to confined domains. In the latter case, even a polynomial nonlinearity can act like a nonlinearity
of infinite-degree. Since the Fourier sine series and the Fourier cosine series are each complete orthogonal sets,
any element from one set must be expressible as a linear combination of elements from the other. In other
words, the Fourier cosine series and Fourier sine series cannot be orthogonal to one another. It is even more
problematic that any particular sine basis element is infinitely broadband when represented as a series of
cosine functions, and vice versa. A difficulty can arise when a finite-degree (e.g., quadratic or even linear) term
in a dynamical equation causes a term of one parity (sine or cosine series) to be mixed (linearly combined) with
a term of the opposite parity (cosine or sine series). When one attempts to project this term onto the appro-
priate basis, the result is that a finite-degree term has infinitely broadened the spectrum. This broadening can-
not be controlled with any standard generalization of Orszag’s rule. We call this problem ‘‘parity mixing.”
Likewise, we call the solution to this problem ‘‘parity filtering.” We are, therefore, prompted to provide the
following two definitions.

Definition 1.1. Parity mixing – Any process that linearly combines a function represented by one type of
trigonometric series with another function represented by a complementary trigonometric series and thereby
producing infinite spectrum broadening.

Definition 1.2. Parity filtering – Any method for extracting Fourier coefficients of a desired type from a func-
tion that is naturally represented with a trigonometric series of a complementary type.

One of the most severe drawbacks to Fourier spectral methods is that parity mixing can ostensibly limit the
geometry to periodic domains. There are very few natural problems that are genuinely periodic in more than
one direction. For many years, researchers who wished to study problems in confined domains have often cho-
sen one of three alternatives when faced with this fact. They have either used periodic Fourier methods and
then made justifications as to the reasonableness of a periodic domain (e.g., by arguing that internal dynamics
are unaffected by boundary conditions); they have resorted to expensive spectral-Galerkin (non-pseudospec-
tral) methods; or, they have simply abandoned traditional Fourier methods. This paper addresses the parity
mixing problem for the case of sine or cosine basis function sets and shows that the introduction of a special
function, Id, a truncated spectral expansion of unity, can be used to rectify the problem and enable a fast,
stable, and mathematically exact calculation of the problematic terms.
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1.1. Physical examples of problems containing parity mixing

We offer the following two examples as concrete illustrations of the concept of parity mixing. The second of
these examples is significantly expanded in Part II of this paper, where we employ new parity-filtering methods
to solve for rotating thermal convection in a confined box [5].

Example 1.1. Suppose we wish to solve the Boussinesq fluid equations (see [6]) in a rectilinear rigid box. For
simplicity, we set all three dimensions of the box equal, Lx ¼ Ly ¼ Lz ¼ p. For the purpose of illustration, we
focus only on the first few terms on the left-hand side of the first component of the Boussinesq equations
ðot � mDÞuþ uoxu ¼ � � � ð1Þ

The terms in Eq. (1) are common in many advection-diffusion systems of PDE’s and are sufficient to illustrate
the issues associated with parity mixing.

Impenetrable and no-slip (fully homogenous) boundary conditions suggest that we should represent the
flow as a triple-sine series. From this, we can define the wavevector, k ¼ ðl;m; nÞ, and the normalized basis
function
wkðx; y; zÞ ¼ ð2=pÞ
3=2 sinðlxÞ sinðmyÞ sinðnzÞ; ð2Þ
and then
uðx; y; z; tÞ ¼
X
jkj6K

AkðtÞwkðx; y; zÞ; ð3Þ
where in practice we can only use a finite number of modes, i.e., j k j6 K. We now need only to solve for the
amplitudes, AkðtÞ, viz.,
ðot þ mk2ÞAk þ
Z

V
wkuoxud3x ¼ � � � ; ð4Þ
where V ¼ ½0; p�3 is the three-dimensional domain volume. Recall that uðx; y; zÞ is represented with a triple-sine
series
u � sinðlxÞ sinðmyÞ sinðnzÞ: ð5Þ

This means that the derivative, oxu, is a cosine-sine-sine series
oxu � cosðlxÞ sinðmyÞ sinðnzÞ: ð6Þ
Thus we have
uoxu � sinðl0xÞ cosðm0yÞ cosðn0zÞ; ð7Þ
where the triplet, fl0;m0; n0g, is used to distinguish a typical wavenumber of the product from the original typ-
ical wavenumber, fl;m; ng. Therefore, if u is a band-limited triple-sine series, then uoxu is a band-limited sine
series in the x-direction and a band-limited cosine series in the y and z-directions.

The fact that uoxu is a band-limited sine series in the x-direction is fortunate since we can then use a fast sine
transform to project the x-direction of uoxu onto the x-direction of wk. The y and z directions are not quite so
simple since a cosine function cannot be written as a band-limited sine series. Indeed, the projection of a cosine
(sine) onto a sine (cosine) expansion requires an infinite number of inner products of an arbitrary sine function
and an arbitrary cosine function. For example, in the z-direction
Pðn1; n2Þ ¼
Z p

0

sinðn1zÞ cosðn2zÞdz ¼
2n1

n2
1
�n2

2

if n1 þ n2 is odd

0 if n1 þ n2 is even:

(
ð8Þ
Eq. (8) implies that if we were to feed uoxu naively into a (finite) fast sine transform, the y and z-directions
would come out incorrectly as a result of the band-unlimited nature of a cosine function when represented
by sine functions. The manifestation of this occurs as aliasing errors from the truncated part of the sine series.
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Example 1.2. Parity mixing does not only stem from nonlinearities. Consider a rotating fluid occupying the
domain V ¼ ½0;p�3. In this example, the walls of the domain are considered impenetrable and stress-free rather
than impenetrable and no-slip. Impenetrability implies that the normal component of velocity vanish at a
boundary, while the stress-free condition implies that the normal derivatives of the tangential components
vanish at a boundary. If the rotation axis is in the vertical direction, with a rotation rate X, then the first few
terms in the horizontal components of the momentum equations are
otu� 2Xv ¼ �oxP þ � � � ð9Þ
otvþ 2Xu ¼ �oyP þ � � � : ð10Þ
Again, this is not an unusual situation; see [7]. In this example, the boundary conditions suggest that each
velocity component is a sine series in its own direction and a cosine series in the other two directions;
u � sinðlxÞ cosðmyÞ cosðnzÞ and v � cosðlxÞ sinðmyÞ cosðnzÞ. It is clear that the Coriolis accelerations in a
stress-free box produce parity mixing in the horizontal directions, just as nonlinear advection does in a rigid
box, i.e., u and v have different parities. In this rotating example, parity mixing arises even for linear dynamics.

While the above two examples focus on rotating and non-rotating hydrodynamics, parity filtering easily
arises in many situations where one or more additional interacting physical quantities are included. The details
of course depend on the specific boundary conditions imposed on each given variable. Examples of other rel-
evant quantities include scalar fields, such as temperature and solutal concentration, and vectors such as mag-
netic fields.

1.2. Parity filtering

We must reconcile the parity mixing in the above two examples. For instance, in Example 1.2, ignoring the
z-direction, suppose we have the velocity component
v ¼
XN 0
l¼0

XN

m¼1

al;m cosðlxÞ sinðmyÞ; ð11Þ
where the coefficients, al;m, are known. For notational convenience, we employ the prime-summation notation
throughout this paper, i.e., for any sequence, cl with l P 0
XN 0
l¼0

cl ¼
c0

2
þ
XN

l¼1

cl: ð12Þ
To solve Eqs. (9) and (10), we need to know how the series in Eq. (11) for v projects onto the cosine basis for u

up to order N so that we may compute the Coriolis accelerations in Eq. (9). That is, for a function (such as v)
of one parity, we need to filter out a complementary function of the opposite parity
v̂ ¼
XN

l¼1

XN 0
m¼0

bl;m sinðlxÞ cosðmyÞ: ð13Þ
Furthermore, we want to choose this function such that the normed difference, kv� v̂k, is minimized. If k � k
represents the L2 norm on ½0; p�2, then for fl;mg � f0; . . . ;Ng we should choose the standard Fourier
coefficients
bl;m ¼
4

p2

XN 0
l0¼0

XN

m0¼1

Pðl; l0ÞPðm0;mÞal0;m0
; ð14Þ
where Pðn0; nÞ is given by Eq. (8). Alternatively, if k � k represents the H 1 norm on ½0; p�2, then a detailed anal-
ysis produces the coefficients
bl;m ¼
4

p2

XN 0
l0¼0

XN

m0¼1

1þ l2
0 þ m2

1þ l2 þ m2
Pðl; l0ÞPðm0;mÞal0;m0

: ð15Þ
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Eqs. (14) and (15) are examples of what we call parity filters. In either scenario, a filter is applied through a
multiplication with a succession of P matrices or their adjoints under a suitable metric (inner product and
associated norm).

The matrix multiplications in Eqs. (14) and (15) represent extremely expensive methods for parity filtering,
i.e., OðN 2Þ operations in each direction. The coefficients, bl;m, could also be computed using a quadrature for-
mula directly from the function, vðx; yÞ, on a chosen grid. Typically, this would also involve the computation
of a sum over each dimension (l0 and m0) for each value of l and m. From now on, we refer to such sums (e.g.,
Eqs. (14) and (15), or quadrature sums) as slow parity filters. The purpose of this paper is to derive a more
efficient method for computing such operations. From now on, we typically refer to any technique for fast

parity filtering as simply parity filtering.
For the two examples from Section 1.1 (and many other PDEs), we posit a new effective procedure that will

exactly rectify apparent parity mixing difficulties. Our method of fast parity filtering is equivalent to choosing
a particular set of quadrature weights so that we can employ fast transforms to compute a collection of spec-
tral coefficients without aliasing errors. In general, any type of nonlinear (or linear) operation on a band-lim-
ited function that can be dealiased when the domain is periodic can also be parity filtered. This is useful since
there are many optimized pseudospectral codes in existence that utilize a full Fourier series to solve problems
in periodic geometries. We show that with a reasonable amount of effort, these codes could be generalized to
solve problems in periodic channels or confined boxes.

2. Mathematical analysis of the spectral expansion of unity

The aliasing errors caused by the product of two band-limited sine series being a band-unlimited sine series

(i.e., a band-limited cosine series) can be corrected. Consider the Fourier sine series of the number 1 on an
interval of length, say p. This is the same as representing cosðnzÞ for n ¼ 0 with a sine series, where
z 2 ½0; p�. We can, therefore, use Eq. (8) and define the truncated expansion of unity for z 2 ½0; p� as
IdmðzÞ ¼
4

p

Xm

n¼1

sinðð2n� 1ÞzÞ
2n� 1

: ð16Þ
The above spectral expansion of unity is advantageous since it can be used to flip the parity of trigonometric
functions without changing their summed value. This property allows the transformation of a cosine series
into an equivalent sine series and vice versa. This is valuable because the coefficients of this equivalent sine
series can be computed via a fast Fourier sine transform.

Using the identity function, IdmðzÞ, we can now consider integrals of the type in Eq. (8).

Proposition 2.1. For all m P dðn1 þ n2Þ=2e, we have
Z p

0

sinðn1zÞ cosðn2zÞIdmðzÞdz ¼
Z p

0

sinðn1zÞ cosðn2zÞdz: ð17Þ
Proposition 2.1 says that for large enough m the integrals on the left and right-hand sides of Eq. (17) are to-
tally equivalent, i.e., the inclusion or exclusion of Idm from the integrand makes no difference.

We will prove Proposition 2.1 shortly. However, the main reason Eq. (17) is helpful is that the product,
cosðn2zÞIdmðzÞ, is a band-limited sine series, and sinðn1zÞIdmðzÞ is a band-limited cosine series. This means that
for a range for either n1 or n2, the projection on the right-hand side of Eq. (17) can be computed exactly via a
fast Fourier sine transform (FFST) or a fast Fourier cosine transform (FFCT). That is, we have the sampling
result for parity-mixed functions.

Corollary 2.2. For N ¼ 2m and the collocation points, zi ¼ pð2i� 1Þ=2N with i 2 f1; . . . ;Ng, we have
Z p

0

sinðn1zÞ cosðn2zÞdz ¼ p
N

XN

i¼1

sinðn1ziÞ cosðn2ziÞIdmðziÞ: ð18Þ
Eq. (18) follows directly from Eq. (17) and the sampling theorem for trigonometric functions with even or
odd parity (see [8], Section 12.1). Note that, unlike in the standard sampling theorem, the number of possible
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wavenumbers in the spectrum is equal to, rather than half, the number of sampling points. Furthermore, if we
fix (say) n2 and vary n1 over a range of size N, then the sums on the right-hand side of Eq. (18) can be com-
puted in OðN log NÞ operations (see [8], Section 12.2). More specifically, if we have a function
f ðzÞ ¼
Xn0

n2¼0

an2
cosðn2zÞ; ð19Þ
then we can compute all n integrals (equivalently quadrature sums)
Z p

0

sinðzÞf ðzÞdz;
Z p

0

sinð2zÞf ðzÞdz; . . .

Z p

0

sinðnzÞf ðzÞdz;
in Oðn log nÞ operations, rather than directly computing n individual sums each with OðnÞ complexity for a
total Oðn2Þ complexity. This Oðn log nÞ method is a pseudospectral approach to parity filtering.

To prove Proposition 2.1 and hence, Corollary 2.2, we must establish two essential properties of this expan-
sion of unity, Idm, namely that it is almost everywhere convergent and uniformly bounded; independent of the
degree of truncation, m. These two properties allow invocation of the Lebesgue dominated-convergence the-
orem and, therefore, the interchange of limits and integration. In this section, we will briefly outline the proof
of Proposition 2.1. More detailed analysis can be found in Appendix A.

Claim 2.3. For almost every z 2 ½0; p�, limm!1IdmðzÞ ¼ 1.

Dirichlet’s Fourier series conditions or Dini’s test guarantee Claim 2.3; see [3]. The exception to convergence is
on the isolated set of measure zero, z 2 f0; pg, where IdðzÞ ¼ 0. More importantly, however, we have
IdmðzÞ ! 1 for almost all z 2 ½0; p�. Also, see Appendix A for a direct proof of the convergence of Idm.

While IdmðzÞ converges everywhere in the interval 0 < z < p, it does not converge uniformly. It cannot, or
else it would converge at the same rate arbitrarily close to the boundary as it does in the interior. This would
not allow the function to vanish eventually at the boundary. Therefore, even though IdmðzÞ converges, we
know its derivatives are unbounded. However, the rate of divergence can be controlled.

Claim 2.4. There exists a constant, I0, (independent of m and z) such that for all m P 1 and all z 2 ½0; p�, we have

j IdmðzÞ j6 I0.

A proof of Claim 2.4 can be found in Appendix A.
Having shown that IdmðzÞ is uniformly bounded and converges to unity for almost all z 2 ½0; p�, we can use

these properties to our benefit.

Corollary 2.5. For any integrable function uðzÞ on the interval ½0; p�, we have
lim
m!1

Z p

0

uðzÞIdmðzÞdz ¼
Z p

0

uðzÞdz: ð20Þ
Proof. (Corollary 2.5) From Claims 2.3 and 2.4 we know that the sequence of functions, uðzÞIdmðzÞ, converges
almost everywhere to uðzÞ and that this sequence is also uniformly bounded by j uðzÞIdmðzÞ j6 I0 j uðzÞ j.
These facts allow the invocation of the Lebesgue dominated-convergence theorem, and we can interchange
the limit and integration in Eq. (20); see [9], Section 1.8. h

Proof. (Proposition 2.1) Eq. (20) implies
lim
m!1

Z p

0

sinðn1zÞ cosðn2zÞIdmðzÞdz ¼
Z p

0

sinðn1zÞ cosðn2zÞdz: ð21Þ
However, since the function sinðn1zÞ cosðn2zÞ only has power up to sinððn1 þ n2ÞzÞ, it is orthogonal to all the
terms in the series representation of IdmðzÞ that are higher order than n1 þ n2. Recall that IdmðzÞ has power up
to order 2m� 1. We, therefore, do not need to take the full limit in Eq. (21); we only need m to be sufficiently
large. If n1 þ n2 is even, then by symmetry both sides of Eq. (17) vanish identically. If n1 þ n2 is odd, then we
must have m P ðn1 þ n2Þ=2þ 1=2 ¼ dðn1 þ n2Þ=2e. h
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While it is difficult to imagine that Proposition 2.1 is entirely new, we have not found any example of such a
result employed in the numerical/spectral analysis literature. Proposition 2.1 can be interpreted as the first half
of a periodically extended Fourier projection integral. However, when considering the periodic extension of,
say, a sine function, integrated against a cosine function, it is necessary to think of the sine function not as its
normal periodic self, but rather as an even extension of a naturally odd function. A similar argument follows if
we were to consider a cosine function integrated against a sine function. While Eq. (17) may seem obvious in
the context of periodic extension, we find it novel that equality is achieved in Eq. (17) with only a finite number
of terms in the expansion, Idm. This property is very useful in designing a fast numerical scheme for the
pseudospectral solution of PDEs. In the next section we discuss the detail behind implementing such a scheme.

3. Application of the spectral expansion of unity and dealiasing

We use the spectral expansion of unity to preserve the applicability (accuracy) of fast transforms under par-
ity violating operations (e.g., Examples 1.1 and 1.2). The costs we incur to compute correctly the projections of
cosines onto sines and vice versa are larger transforms. To see this, consider two band-limited sine series,
f ðzÞ ¼
Xn

j¼1

aj sinðjzÞ; gðzÞ ¼
Xn

j¼1

bj sinðjzÞ: ð22Þ
We could just as easily choose to examine one sine series and one cosine series but Eq. (22) will suffice for
illustration. Also, there is no reason to examine the product of two cosine series since this produces a cosine
series and normal dealiasing can account for this case. We wish to compute how the product of f ðzÞ and gðzÞ
projects onto a sine basis up to order n, i.e.,
f ðzÞgðzÞ ¼
X2n

j¼0

~cj cosðjzÞ ¼
X1
j¼1

cj sinðjzÞ: ð23Þ
That is, we want a fast error free pseudospectral way to compute the coefficients, cj for j 2 f1; . . . ; ng, without
doing any cumbersome [i.e., Oðn2Þ] calculations which require explicit use of Eq. (8).

If we know the coefficients, aj and bj for j 2 f1; . . . ; ng, we can perform a FFST to obtain f ðzÞ and gðzÞ in
grid space and multiply the functions on collocation points. However, this product is now effectively a cosine
series with power up to order 2n, and so to transform this into an equivalent sine series, we must multiply
f ðzÞgðzÞ by IdmðzÞ for some m. We can then take the inverse FFST of the result and obtain the correct values
for the coefficients, cj.

A remaining question is: how big must m be? To answer this, recall that we are implicitly computing inte-
grals of the form
Z p

0

sinðkzÞ cosðjzÞIdmðzÞdz; ð24Þ
with 1 6 k 6 n and 0 6 j 6 2n. The index j goes up to 2n because the cosine term in the integrand represents
one component of the product of two sine functions each of which can have power up to order n. Therefore,
we may take m ¼ dðnþ 2nÞ=2e ¼ d3n=2e (or greater with no extra benefit by Proposition 2.1), so that the max-
imum order in Idm, (i.e., 2m� 1) is the largest odd integer which is less than or equal to the transform size,
N ¼ 3n. This fact implies that we must compute multiplications on a grid that is three times larger than the
grid we would use if there were no quadratic nonlinearities and a grid that is two times larger than we would
use if there were no parity-mixed quadratic nonlinearities. However, the factor of two cost over the non-par-
ity-mixed quadratic nonlinearities (as in the case of a periodic box) is mitigated because we need only use real-
to-real transforms rather than complex-to-real and real-to-complex transforms; see [10]. Finally, we must
check that the choice of grid size, N ¼ 3n, does not cause any additional aliasing error. In doing this, we
see that there is a slight difference between the cases for when n is even and for when n is odd.

First, assume that n is an even integer. Since 2m� 1 is the largest odd integer which is less than or equal to
3n, we have 2m� 1 ¼ 3n� 1. Therefore, the product, f ðzÞgðzÞIdmðzÞ, has power up to order
nþ nþ ð3n� 1Þ ¼ 5n� 1. Since, for some arbitrary k, the basic aliasing rule is N þ k ! N � k, this power
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gets aliased to order 5n� 1 ¼ 3nþ ð2n� 1Þ ! 3n� ð2n� 1Þ ¼ nþ 1 which is out of the range of interest (i.e.,
f0; . . . ; ng) and gets deleted. Therefore, when n is even, the choice of grid size, N ¼ 3n, does not cause any
additional aliasing error.

Next, assume that n is an odd integer and that 2m� 1 ¼ 3n. Then, the product, f ðzÞgðzÞIdmðzÞ, has power
up to order nþ nþ 3n ¼ 5n. This power gets aliased to order 3n� 2n ¼ n. Since this is in the range of interest,
as it stands now, aliasing to order n might cause a concern when n is odd. Given the general desire for trans-
forms sizes that are combinations of small prime numbers (such as powers of two), cases when n is odd are not
often encountered in practice. Nevertheless, if the situation of odd n were to arise, then we could always pad
our transforms by one extra element, i.e., we could make the replacement N ¼ 3n! 3nþ 1. This replacement
(while incurring a minor computational cost) would render the transform size even and the above results
would apply. However, in the case when n is odd, aliasing errors are naturally avoided without additionally
increasing N. Showing this result is somewhat lengthy and therefore the analysis can be found in Appendix B.

The above analysis, and Appendix B, carefully examines the aliasing for a particular nonlinearity, i.e., a
quadratic nonlinearity. In general, we can easily determine what happens in the face of some general nonlin-
earity of a given degree, say p. For a usual pth order nonlinearity that does not contain any parity mixing, we
know from a generalization of Orszag’s rule that we must pad our transforms by a factor of bðp þ 1Þ=2c. How-
ever, for a parity-mixed nonlinearity, we know that we must include a multiplication by the identity function,
Id, which must have power up to order p þ 1 times the degree of the functions we are trying to represent spec-
trally. This makes a pth order term look like a ð2p þ 1Þth order term. Therefore, a pth order parity-mixed term
must be padded by a factor of bðð2p þ 1Þ þ 1Þ=2c ¼ p þ 1. This is also the same factor of bandwidth that the
identity function, Id, must contain over our dynamic field variables.
4. Consideration of errors

We shall now examine the general numerical application and the errors associated with the formulae dis-
cussed above. Specifically, we wish to examine the errors which are incurred when we use various methods to
compute the coefficients, cj;k, in the series
cosðjzÞ ¼
X1
k¼1

cj;k sinðkzÞ: ð25Þ
We outline three methods for computing the coefficients, cj;k. We denote the various methods with a super-
script, either 0,1,2. The first way to compute the coefficients is with the explicit use of Eq. (8). Therefore, define
the exact coefficient values
cð0Þj;k ¼
4k

pðk2�j2Þ if jþ k is odd

0 if jþ k is even:

(
ð26Þ
The first alternate method for attempting to compute the coefficients in Eq. (25) is by naively taking the dis-
crete sine transform of cosðjziÞ on the grid zi ¼ pð2i� 1Þ=2N , with i 2 f1; . . . ;Ng. We must choose these col-
location points since they are the points for which both a sine and a cosine transform are mutually defined.
Whence,
cð1Þj;k ¼
2

N

XN

i¼1

cosðjziÞ sinðkziÞ: ð27Þ
For each j and for all k, these sums can be computed using a FFT. Furthermore, these first alternate coeffi-
cients, cð1Þj;k , can be calculated by analyzing the way the exact coefficients, cð0Þj;k for k P N , alias back to the range
1 6 k < N . By computing these coefficients, one can clearly see that cð0Þj;k 6¼ cð1Þj;k for any range of j and/or k. For
the interested reader, this calculation can be found in Appendix C.

Finally, we can also compute the coefficients by multiplying cosðjzÞ by IdmðzÞ in grid space and then take the
discrete sine transform of the result, i.e., we apply the parity filtering method. That is, we compute
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each p

G.M. Vasil et al. / Journal of Computational Physics 227 (2008) 7999–8016 8007
cð2Þj;k ¼
2

N

XN

i¼1

cosðjziÞIdmðziÞ sinðkziÞ; ð28Þ
where we compute the coefficients of each j and for all k using a FFT. The theory described earlier in this pa-
per demonstrates that cð2Þj;k ¼ cð0Þj;k for all jþ k 6 N .

To illustrate the difference between calculating the coefficients, cj;k, using Eq. (28) versus Eq. (27), we con-
sider the following error definitions
E
ð1Þ
j;kmax

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkmax

k¼1 cð1Þj;k � cð0Þj;k

� �2

Pkmax

k¼1 cð0Þj;k

� �2

vuuuut ; E
ð2Þ
j;kmax

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkmax

k¼1 cð2Þj;k � cð0Þj;k

� �2

Pkmax

k¼1 cð0Þj;k

� �2

vuuuut : ð29Þ
Plots of Eð1Þj;bN=3c, E
ð2Þ
j;bN=3c, and E

ð2;1Þ
j;bN=3c for the sine transform of a cosine function for N 2 f32; 64; 128; 256; 512; 1024g and j 6 N . In

lot, the top line shows E
ð1Þ
j;bN=3c, the bottom line shows E

ð2Þ
j;bN=3c and the intermediate line shows the ratios, Eð2;1Þj;bN=3c.
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The meaning of these error definitions becomes clear if we define the truncated expansions
Fig. 2.
the top
CðiÞj;kmax
ðzÞ ¼

Xkmax

k¼1

cðiÞj;k sinðkzÞ; ð30Þ
for i 2 f0; 1; 2g. Using the standard L2 norm on ½0; p� and Parseval’s identity (see [3], p. 37), the definitions in
Eqs. (29) become simply
E
ð1Þ
j;kmax

¼
kCð1Þj;kmax

� Cð0Þj;kmax
kL2

kCð0Þj;kmax
kL2

; E
ð2Þ
j;kmax

¼
kCð2Þj;kmax

� Cð0Þj;kmax
kL2

kCð0Þj;kmax
kL2

: ð31Þ
It is also helpful to define the ratio of these two errors, viz.,
E
ð2;1Þ
j;kmax

¼
E
ð2Þ
j;kmax

E
ð1Þ
j;kmax

: ð32Þ
Plots of Eð1Þj;N=2, and E
ð2Þ
j;N=2 for the sine transform of a cosine function for N 2 f32; 64; 128; 256; 512; 1024g and j 6 N . In each plot,

line shows E
ð1Þ
j;N=2 and the bottom line shows E

ð2Þ
j;N=2. For clarity, the ratios, Eð2;1Þj;N=2, are not shown.
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In general, Corollary 2.2 asserts that cð2Þj;k ¼ cð0Þj;k for jþ kmax 6 N , and thus we should expect that Eð2Þj;kmax
’ 0 (to

numerical precision) in this same range. As a test, the errors, Eð1Þj;kmax
, Eð2Þj;kmax

, and E
ð2;1Þ
j;kmax

, were computed for var-
ious values of kmax and N using FFTW (see [10]) with double-precision arithmetic. The coefficients, cð0Þj;k , were
calculated using Eq. (26). The other coefficients, cð1Þj;k and cð2Þj;k , were calculated by first taking the inverse fast
cosine transform of the identity matrix, di;j, and then feeding the grid values into a fast sine transform [of
course multiplying by IdmðziÞ for cð2Þj;k ].

Figs. 1–3 show the errors in computing cð2Þj;k using a fast version of Eq. (28) for kmax ¼ bN=3c, kmax ¼ N=2,
and kmax ¼ b2N=3c, respectively. For each value of kmax, we compute errors for N 2 f32; 64; 128; 256; 512;
1024g. Eð2Þj;kmax

is zero to within machine-roundoff error E
ð2Þ
j;kmax

’ 10�15 � 10�14
� �

for all j 6 N � kmax, and the
magnitude of this error only depends extremely weakly on N, if at all.

Likewise, Figs. 4–6 show the errors associated with representing a sine function with a cosine series. In these
cases, E

ð2Þ
j;kmax

is also zero to within machine-roundoff error. However, for small j, the uncorrected error, E
ð1Þ
j;kmax

is
smaller than it is when representing a cosine function with a sine series. This should be expected based on the
behavior of sine and cosine functions near boundaries. Since individual cosine functions never vanish at a
Fig. 3. Plots of Eð1Þj;b2N=3c, and E
ð2Þ
j;b2N=3c for the sine transform of a cosine function for N 2 f32; 64; 128; 256; 512; 1024g and j 6 N . In each

plot, the top line shows E
ð1Þ
j;b2N=3c and the bottom line shows E

ð2Þ
j;b2N=3c. For clarity, the ratios, Eð2;1Þj;b2N=3c, are not shown.



Fig. 4. Plots of Eð1Þj;bN=3c, E
ð2Þ
j;bN=3c, and E

ð2;1Þ
j;bN=3c for the cosine transform of a sine function for N 2 f32; 64; 128; 256; 512; 1024g and j 6 N . In

each plot, the top line shows E
ð1Þ
j;bN=3c, the bottom line shows E

ð2Þ
j;bN=3c and the intermediate line shows the ratios, E

ð2;1Þ
j;bN=3c.
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boundary, it is difficult to approximate their behavior by functions that always vanish at a boundary. Obvi-
ously, the converse is not true. It is relatively easy to add cosine functions in such a way that they cancel at the
boundaries. However, the same cannot be said for their derivatives. Thus, if we were considering parity filters
under the H 1 norm on ½0; p� (as opposed to the L2 norm), Eð1Þj;kmax

would be substantially larger when represent-
ing sine functions with a cosine series, while E

ð2Þ
j;kmax

would still be zero to within machine precision.
With regard to all of the errors shown in Figs. 1–6, kmax ¼ b2N=3c corresponds to a value that one would

use for the standard 2=3-dealiasing rule for a non-parity-mixed quadratic nonlinearity. However, the spectrum
is only error free up to jmax ¼ bN=3c which is not sufficient to remain error free up to kmax. Nevertheless,
kmax ¼ bN=3c, seen in Fig. 3, corresponds to a value one would use for parity filtering a quadratic nonlinearity
(e.g., Example 1.1). In this case, the spectrum going up to kmax would broaden up to 2kmax ¼ b2N=3c which is
satisfactory since there are no substantial errors up to this value. Finally, kmax ¼ N=2 corresponds to a value
that one would use for parity filtering a linear term (e.g., Example 1.2 and Part II of this paper). In this case,
we have jmax ¼ kmax ¼ N=2. This implies that any sine or cosine function up to this degree can be accurately
represented on a cosine or sine basis of the same size. Finally, in every case, the following holds



Fig. 5. Plots of E
ð1Þ
j;N=2, and E

ð2Þ
j;N=2 for the cosine transform of a sine function for N 2 f32; 64; 128; 256; 512; 1024g and j 6 N . In each plot,

the top line shows E
ð1Þ
j;N=2 and the bottom line shows E

ð2Þ
j;N=2. For clarity, the ratios, Eð2;1Þj;N=2, are not shown.
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E
ð2Þ
j;kmax

< E
ð1Þ
j;kmax

for all j 6 N ; ð33Þ
even for j larger than the critical value, i.e., j > N � kmax. Therefore, independent of the degree of dealiasing,
one can always improve aliasing error by judiciously multiplying by the identity function, IdmðziÞ, prior to per-
forming phase-mixed discrete transforms.

At this point, we make a final comment regarding the growth of the various parity filtered errors, Eð2Þj;kmax
, as

a function of j. While E
ð2Þ
j;kmax

is formally zero up to some critical jmax ¼ N � kmax, machine precision is actually
the best that we can expect in reality. After jmax, Figs. 1–6 clearly show that the errors climb dramatically until
they are Oð1Þ as j ’ N , (depending on the value of kmax). However, machine precision leaves open the possi-
bility of a much wider class of collocation point weights, as opposed to simply IdmðzÞ. That is, we could poten-
tially replace the spectral expansion of unity with some other function, w�

mðzÞ. Then, if we computed the
spectral coefficients, cj;k, via a third alternative
cð3Þj;k ¼
2

N

XN

i¼1

cosðjziÞw�
mðziÞ sinðkziÞ; ð34Þ



Fig. 6. Plots of E
ð1Þ
j;b2N=3c, and E

ð2Þ
j;b2N=3c for the cosine transform of a sine function for N 2 f32; 64; 128; 256; 512; 1024g and j 6 N . In each

plot, the top line shows E
ð1Þ
j;b2N=3c and the bottom line shows E

ð2Þ
j;b2N=3c. For clarity, the ratios, Eð2;1Þj;b2N=3c, are not shown.
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then we could require that the associated error was formally bounded by a small parameter of our choosing,
i.e.,
E
ð3Þ
j;kmax

6 �; ð35Þ
for j 6 N � kmax. This type of idea has been successfully carried out on the approximation of functions; see
[11]. A finite (but perhaps machine precision) value for � leaves a potentially large class of weights, w�

mðzÞ.
The possible advantage to this is we may be able to find a class of weights that gives, practically speaking,
no significant error (� ’ 10�15) for j 6 N � kmax, but where the error grows much more slowly for
j > N � kmax than in Figs. 1–6.

5. Conclusion

The above theory and error tests (Figs. 1–6) demonstrate that we have developed a stable procedure for
computing the projection (up to a given degree) of any finite combination of trigonometric functions in either
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the Fourier sine series or the Fourier cosine series basis sets. The implementation merely involves the multi-
plication of Idm into the relevant terms. The efficiency of this procedure is inherent in the speed of the fast
Fourier transform. There are many highly optimized FFT libraries available for virtually all hardware plat-
forms, and there are many numerical codes that employ these libraries to solve a variety of physical problems
in periodic domains. We believe that this new and easily implemented method allows for a wider range of use
of many of these codes. They should be able to solve problems in a wider range of geometries with only a rel-
atively modest amount of modification.

In Part II of this paper, we implement parity filtering techniques in a numerical code designed to solve for
rapidly rotating and high-Rayleigh-number convection in a confined box. In doing so, we find that there exist
dramatic errors and physically spurious solutions if parity mixing is not properly accounted for. However,
when parity mixing is properly accounted for, we find physically consistent solutions with novel dynamics.
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Appendix A. Convergence and boundedness of Idm

Proof. (Claim 2.3) We consider the modified series
Idmðz; nÞ ¼
4

p

Xm

n¼1

n2n�1 sinðð2n� 1ÞzÞ
2n� 1

: ðA:1Þ
Series (A.1) converges geometrically for all j n j< 1. Therefore, we take the limit as m!1 and consider
Idðz; nÞ ¼ 4

p

X1
n¼1

n2n�1 sinðð2n� 1ÞzÞ
2n� 1

: ðA:2Þ
By virtue that for any complex number, f, with j f j< 1
arctanhðfÞ ¼
X1
n¼1

f2n�1

2n� 1
; ðA:3Þ
we find (after some standard manipulation) that
Idðz; nÞ ¼ 2

p
arctan

2n sinðzÞ
1� n2

� �
: ðA:4Þ
Taking the limit as n! 1 from the left, we obtain limn!1�Idðz; nÞ ¼ 1 for all 0 < z < p. h

Lemma 5.1. For all m P 1 we have the bound
p2

8
�
Xm

n¼1

1

ð2n� 1Þ2
6

1

4m
: ðA:5Þ
Proof. (Lemma 5.1) It is a classical result that
X1
n¼1

1

ð2n� 1Þ2
¼ 3fð2Þ

4
¼ p2

8
; ðA:6Þ
where fðsÞ is the Riemann f-function (see [12], Section 23.2). Therefore, estimate the difference
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p2

8
�
Xm

n¼1

1

ð2n� 1Þ2
¼
X1
n¼m

1

ð2nþ 1Þ2
: ðA:7Þ
To do this, consider the telescoping sum
X1
n¼m

1

4nðnþ 1Þ ¼
X1
n¼m

Z nþ1
2

n�1
2

dt

ð2t þ 1Þ2
¼
Z 1

m�1
2

dt

ð2t þ 1Þ2
¼ 1

4m
; ðA:8Þ
and
1

4nðnþ 1Þ ¼
1

ð2nþ 1Þ2
þ 1

4nðnþ 1Þð2nþ 1Þ2
: ðA:9Þ
Since 4nðnþ 1Þð2nþ 1Þ2 > 0, we have Ineq. (A.5) if we substitute Eq. (A.9) into the left-hand side of Eq.
(A.8). h

Proof. (Claim 2.4) Consider
ðIdmðzÞ � 1Þ2 ¼ 1þ
Z z

0

Idmðz0Þ � 1ð ÞId0mðz0Þdz0 �
Z p

z
ðIdmðz0Þ � 1ÞId0mðz0Þdz0: ðA:10Þ
Expression (A.10) is valid by virtue that Idmð0Þ ¼ IdmðpÞ ¼ 0 and that for any finite value of m P 1, the deriv-
ative of IdmðzÞ is a well-defined trigonometric polynomial
Id0mðzÞ ¼
4

p

Xm

n¼1

cosðð2n� 1ÞzÞ: ðA:11Þ
We use the triangle inequality to obtain the estimate
ðIdmðzÞ � 1Þ2 6 1þ
Z p

0

jðIdmðz0Þ � 1ÞId0mðz0Þjdz0; ðA:12Þ
and then use the Schwartz inequality to obtain
ðIdmðzÞ � 1Þ2 6 1þ
Z p

0

jIdmðz0Þ � 1j2 dz0

� �1=2

�
Z p

0

jId0mðz0Þj2 dz0

� �1=2

: ðA:13Þ
The integrals on the right-hand side of Ineq. (A.13) can be computed exactly because of the orthogonality of
trigonometric functions. That is
Z p

0

jIdmðz0Þ � 1j2 dz0 ¼
8

p
p2

8
�
Xm

n¼1

p

ð2n� 1Þ2

 !
ðA:14Þ

Z p

0

jId0mðz0Þj2 dz0 ¼
8m
p
: ðA:15Þ
From Ineq. (A.5), we now have
ðIdmðzÞ � 1Þ2 6 1þ 4

p
; ðA:16Þ
and we can take I0 ¼ 1þ ð1þ 4=pÞ1=2 ’ 2:51. h

Note that although Ineq. (A.16) may not be the best possible bound on the magnitude of IdmðzÞ, it suffices
for the purposes of Section 2; the best possible uniform bound is given by 0 6 IdmðzÞ 6 4=p.

Appendix B. Non-aliasing for odd spectrum sizes

To solve the aliasing problem when n is odd, we must examine how the high wavenumber power is trans-
ferred by multiplication and eventually aliased. Since the aliasing problem only occurs because of the highest
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wavenumbers, we can examine what happens at these scales alone and determine how to fix the aliasing prob-
lem. Therefore, without loss of generality, assume that
f ðxÞ ¼ gðxÞ ¼ sinðnzÞ; ðB:1Þ

and
IdmðzÞ ¼ Idm�1ðzÞ þ e3n sinð3nzÞ: ðB:2Þ

From Eq. (16), we should use e3n ¼ 4=3np. However, this is not the best choice in the current situation.
Consider
f ðzÞgðzÞIdmðzÞ ¼ sinðnzÞ2Idm�1ðzÞ þ e3n sinð3nzÞ sinðnzÞ2

¼ sinðnzÞ2Idm�1ðzÞ � e3n
sinðnzÞ

4
þ e3n

sinð3nzÞ
4

� e3n
sinð5nzÞ

4
: ðB:3Þ
After the application of a discrete sine transform, the sinðnzÞ2Idm�1ðzÞ term in this expression comes out cor-
rectly up to order n since there is no power in this term greater than order 2nþ 2ðm� 1Þ � 1 ¼ 5n� 3. If we
are using a transform size of order 3n, recall that only terms with a degree greater than or equal to 5n can
potentially contaminate our spectrum at or below order n. Also, the sinð3nzÞ term is computed correctly
and then deleted since it is greater than order n. The sinðnzÞ term is computed correctly and kept since it is
in the range of interest. However, the sinð5nzÞ term is aliased to order n and thus is the potential source of
error. Therefore, after performing a discrete sine transform on f ðzÞgðzÞIdmðzÞ, we obtain a result as though
we had performed an exact sine transform on
f ðzÞgðzÞIdmðzÞ ! sinðnzÞ2Idm�1ðzÞ � 2e3n
sinðnzÞ

4
; ðB:4Þ
rather than the correct version
f ðzÞgðzÞIdmðzÞ ! sinðnzÞ2Idm�1ðzÞ � e3n
sinðnzÞ

4
: ðB:5Þ
Notice that because of aliasing the e3n sinð3nzÞ term on the right-hand side of (B.4) plays double the role that it
would if it were computed on a grid that was one point larger (i.e., if n were even). However, by taking the
value of e3n ¼ 2=3np, rather than 4=3np, we can let the order 5n aliasing occur with impunity. This turns
out to be quite serendipitous. If we were to tabulate the values of IdmðzÞ on the grid zi ¼ pði=N � 1=2NÞ
for i 2 f1; . . . ;Ng and then supply these values to the discrete sine transform
ek ¼
2

N

XN

i¼1

IdmðziÞ sinðkziÞ; ðB:6Þ
the last value, e3n, comes out two times as large as it should, just as occurs with the first value of a discrete
cosine transform. Therefore, if we define ek to be the kth element of the spectrum
4

p
; 0;

4

3p
; . . . ; 0;

4

3np

� �
; ðB:7Þ
then the values of IdmðzÞ will come out conveniently so that we can use it to compute the projection correctly
of f ðzÞgðzÞ on a sine basis up to order n using an FFST on N ¼ 3n points, when n is an odd integer. Likewise,
we can use the spectrum
4

p
; 0;

4

3p
; . . . ; 0;

4

ð3n� 1Þp ; 0
� �

; ðB:8Þ
when n is an even integer to compute the projection using an FFST on N ¼ 3n points as well.

Appendix C. Computation of aliased coefficients

In this appendix, we show analytically how to compute the coefficients, cð1Þj;k from Section 4. These are the
coefficients that result from naively feeding a tabulated sine function (in grid space) into a fast cosine trans-
form. The result produces aliasing and hence, we do not obtain the correct result as required.
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For the analytical computation of cð1Þj;k from Section 4, recall that the basic aliasing rule is N þ k ! N � k.
Therefore, it follows that
2N � k ¼ N þ ðN � kÞ ! N � ðN � kÞ ¼ k ðC:1Þ
2N þ k ¼ N þ ðN þ kÞ ! N � ðN þ kÞ ¼ �k ðC:2Þ
4N � k ¼ N þ ð3N � kÞ ! N � ð3N � kÞ ¼ �ð2N � kÞ ðC:3Þ
4N þ k ¼ N þ ð3N � kÞ ! N � ð3N � kÞ ¼ �ð2N þ kÞ: ðC:4Þ
From these relations, we can recursively produce the aliasing rule for any positive integer. Therefore, for any
integer, p P 1, we have the aliasing rules
ð4p � 2ÞN 	 k ! 
k ðC:5Þ
4pN 	 k ! 	k: ðC:6Þ
The rules in (C.5) and (C.6) are sufficient to cover any positive integer by using different combinations of p and
k. The negative signs on the right-hand sides of (C.5) and (C.6) simply denote cð0Þj;�k ¼ �cð0Þj;k . Therefore, we have
cð1Þj;k ¼ cð0Þj;k þ
X1
p¼1

cð0Þj;ð4p�2ÞN�k � cð0Þj;ð4p�2ÞNþk þ cð0Þj;4pNþk � cð0Þj;4pN�k

� �
: ðC:7Þ
The computation of the series in Eq. (C.7) is awkward, but a straightforward task if we use the identity (see
[12], Section 4.3)
p cotðxÞ ¼ 1

x
þ
X1
p¼1

1

x� p
þ 1

xþ p

� �
: ðC:8Þ
With this, we obtain
cð1Þj;k ¼
4 cos jp

2Nð Þ sin kp
2Nð Þ

N cos jp
Nð Þ�cos kp

Nð Þð Þ if jþ k is odd

0 if jþ k is even:

8<
: ðC:9Þ
These coefficients show clearly that aliasing causes cð1Þj;k 6¼ cð0Þj;k (compare Eqs. (C.9) and (26)). While some spe-
cial values of j and k in the range jþ k 6 N do provide only a small difference between cð1Þj;k and cð0Þj;k , for high
wavenumbers, i.e, j; k � N , it turns out that the difference between the aliased coefficients and the correct coef-
ficients is of order unity. This large error in the high range of the spectrum can have dramatic consequences in
certain applications, in particular, in the numerical solution of time-dependent PDE’s as discussed in Exam-
ples 1 and 2.
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